Maximum efficiency of steady-state heat engines at arbitrary power.
نویسندگان
چکیده
We discuss the efficiency of a heat engine operating in a nonequilibrium steady state maintained by two heat reservoirs. Within the general framework of linear irreversible thermodynamics we derive a universal upper bound on the efficiency of the engine operating at arbitrary fixed power. Furthermore, we show that a slight decrease of the power below its maximal value can lead to a significant gain in efficiency. The presented analysis yields the exact expression for this gain and the corresponding upper bound.
منابع مشابه
Efficiency at maximum power: An analytically solvable model for stochastic heat engines
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional...
متن کاملWork output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
We formulate the work output and efficiency for linear irreversible heat engines working between a finite-sized hot heat source and an infinite-sized cold heat reservoir until the total system reaches the final thermal equilibrium state with a uniform temperature. We prove that when the heat engines operate at the maximum power under the tight-coupling condition without heat leakage the work ou...
متن کاملThe equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate...
متن کاملSteady-State Performance Characteristics of Photovoltaic System Coupled with a Centrifugal Water Pump
In this article our objective is to obtain steady state characteristics of shunt, series, and separately excited DC motors coupled with a centrifugal water pump supplied through a step-up, step-down, and cuk converter from photovoltaic generator. We assume that there are no storage batteries and, of course, the system must operate on maximum utilization i.e. maximum water must be pumped. It is ...
متن کاملSteady-State Performance Characteristics of Photovoltaic System Coupled with a Centrifugal Water Pump
In this article our objective is to obtain steady state characteristics of shunt, series, and separately excited DC motors coupled with a centrifugal water pump supplied through a step-up, step-down, and cuk converter from photovoltaic generator. We assume that there are no storage batteries and, of course, the system must operate on maximum utilization i.e. maximum water must be pumped. It is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2016